glucopy.Gframe.cv#
- Gframe.cv(per_day: bool = False, ddof: int = 1)[source]#
Calculates the Coefficient of Variation (CV) of the CGM values.
- Parameters:
per_day (bool, default False) – If True, returns a
pandas.Series
with the coefficient of variation for each day. If False, returns the coefficient of variation for the entire dataset.ddof (int, default 1) – Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is 1.
- Returns:
cv – Coefficient of variation of the CGM values.
- Return type:
float | pandas.Series
Examples
Calculating the coefficient of variation for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.cv() Out[3]: 0.44863039748753963
Calculating the coefficient of variation for each day:
In [4]: gf.cv(per_day=True) Out[4]: Day 2020-11-27 0.087655 2020-11-28 0.316007 2020-11-29 0.429772 2020-11-30 0.258088 2020-12-01 0.303172 ... 2021-03-14 0.281663 2021-03-15 0.601054 2021-03-16 0.272666 2021-03-17 0.325162 2021-03-18 0.294188 Name: Coefficient of Variation, Length: 112, dtype: float64