glucopy.Gframe.mse#
- Gframe.mse(per_day: bool = False, scale='default', dimension=3, tolerance='sd', method='MSEn', show=False, **kwargs)[source]#
Calculates the Multiscale Sample Entropy using neurokit2.entropy_multiscale()
For more information on the parameters and details see
neurokit2.complexity.entropy_multiscale()
.- Parameters:
per_day (bool, default False) – If True, returns a
pandas.Series
with the Multiscale Sample Entropy for each day. If False, returns the Multiscale Sample Entropy for the entire dataset.others – For more information on the rest of the parameters see
neurokit2.complexity.entropy_multiscale()
.
- Returns:
mse – Multiscale Sample Entropy.
- Return type:
float | pandas.Series
Examples
Calculating the Multiscale Sample Entropy for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.mse() Out[3]: 1.2628694577099027
Calculating the Multiscale Sample Entropy for each day:
In [4]: gf.mse(per_day=True) Out[4]: Day 2020-11-27 NaN 2020-11-28 0.374240 2020-11-29 0.512896 2020-11-30 0.357736 2020-12-01 0.269845 ... 2021-03-14 0.287104 2021-03-15 0.691363 2021-03-16 0.291513 2021-03-17 0.360221 2021-03-18 0.461315 Name: MSE, Length: 112, dtype: float64
Calculating and showing the Multiscale Sample Entropy for the entire dataset:
In [5]: gf.mse(show=True) Out[5]: 1.2628694577099027