Plot#

Box#

plot.box(gf[, per_day, group_by_week, ...])

Plots a box plot of the CGM values in the Gframe object

Trace#

plot.agp(gf[, add_quartiles, add_deciles, ...])

Plots an Ambulatory Glucose Profile plot of the CGM values in the Gframe object.

plot.mage(gf[, height, width])

Plots a line plot of the CGM values in the Gframe object separated by time in range for each day

plot.mean(gf[, add_all_mean, add_all_std, ...])

Plots a line plot of the mean and standard deviation of fixed intervals of 15 minutes

plot.per_day(gf[, num_days, height, width])

Plots a line plot of the CGM values for each day in the Gframe object

plot.tir(gf[, interval, height, width])

Plots a line plot of the CGM values in the Gframe object separated by time in range for each day

Histogram#

plot.freq(gf[, per_day, interval, count, ...])

Plots a histogram of the frequency of the glucose in the target range

plot.roc(gf[, per_day, height, width])

Plots a histogram of the Glucose rate of change

Curve Analysis#

plot.fourier(gf[, n, amplitude_guess, ...])

Plots the best-fit curve obtained by a Fourier series using scipy.optimize.curve_fit.

plot.periodogram(gf[, per_day, height, width])

Plot the best-fit curve obtained by a Lomb-Scargle periodogram.