glucopy.Gframe.iqr#
- Gframe.iqr(per_day: bool = False, interpolation: str = 'linear')[source]#
Calculates the Interquartile Range (IQR) of the CGM values.
- Parameters:
per_day (bool, default False) – If True, returns a pandas.Series with the interquartile range for each day. If False, returns the interquartile range for the entire dataset.
interpolation (str, default 'linear') –
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j. Can be one of the following:
’linear’: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
’lower’: i.
’higher’: j.
’nearest’: i or j, whichever is nearest.
’midpoint’: (i + j) / 2.
- Returns:
iqr – Interquartile range of the CGM values.
- Return type:
float | pandas.Series
Examples
Calculating the interquartile range for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.iqr() Out[3]: 95.0
Calculating the interquartile range for each day:
In [4]: gf.iqr(per_day=True) Out[4]: Day 2020-11-27 36.00 2020-11-28 64.50 2020-11-29 109.25 2020-11-30 39.25 2020-12-01 63.50 ... 2021-03-14 71.00 2021-03-15 143.50 2021-03-16 68.00 2021-03-17 60.50 2021-03-18 90.50 Name: Interquartile Range, Length: 112, dtype: float64