glucopy.Gframe.quantile#
- Gframe.quantile(per_day: bool = False, q: float = 0.5, interpolation: str = 'linear')[source]#
Calculates the quantile of the CGM values.
- Parameters:
per_day (bool, default False) – If True, returns a pandas.Series with the quantile for each day. If False, returns the quantile for all days combined.
q (float, default 0.5) – Value between 0 and 1 for the desired quantile.
interpolation (str, default 'linear') –
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j. Can be one of the following:
’linear’: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
’lower’: i.
’higher’: j.
’nearest’: i or j, whichever is nearest.
’midpoint’: (i + j) / 2.
- Returns:
quantile – Quantile of the CGM values.
- Return type:
float | pandas.Series
Examples
Calculating the median for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.quantile() Out[3]: 134.0
Calculating the first quartile for the entire dataset:
In [4]: gf.quantile(q=0.25) Out[4]: 93.0
Calculating the median for each day:
In [5]: gf.quantile(per_day=True) Out[5]: Day 2020-11-27 279.0 2020-11-28 131.5 2020-11-29 131.5 2020-11-30 122.5 2020-12-01 144.0 ... 2021-03-14 138.0 2021-03-15 100.0 2021-03-16 158.0 2021-03-17 119.5 2021-03-18 182.0 Name: Quantile 0.5, Length: 112, dtype: float64