glucopy.Gframe.mag#
- Gframe.mag(per_day: bool = False, time_unit: str = 'm')[source]#
Calculates the Mean Absolute Glucose Change per unit of time (MAG).
\[MAG = \sum_{i=1}^{N} \frac{|\Delta X_i|}{\Delta T_i}\]\(N\) is the number of glucose readings.
\(\Delta X_i\) is the difference between glucose values at time i and i-1.
\(\Delta T_i\) is the difference between times at time i and i-1.
- Parameters:
per_day (bool, default False) – If True, returns the a
pandas.Series
with the MAG for each day. If False, returns the MAG for the entire dataset.time_unit (str, default 'm' (minutes)) – The time time_unit for the x-axis. Can be ‘s (seconds)’, ‘m (minutes)’, or ‘h (hours)’.
- Returns:
mag – Mean Absolute Glucose Change per unit of time.
- Return type:
float
Examples
Calculating the MAG for the entire dataset and minutes as the time unit (default):
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.mag() Out[3]: 0.7260142569639062
Calculating the MAG for the entire dataset and hours as the time unit:
In [4]: gf.mag(time_unit='h') Out[4]: 43.560855417834375
Calculating the MAG for each day and minutes as the time unit:
In [5]: gf.mag(per_day=True) Out[5]: Day 2020-11-27 0.693333 2020-11-28 0.795789 2020-11-29 0.775281 2020-11-30 0.669242 2020-12-01 0.654494 ... 2021-03-14 0.632756 2021-03-15 0.853411 2021-03-16 0.656360 2021-03-17 0.573018 2021-03-18 0.514408 Name: MAG, Length: 112, dtype: float64