glucopy.Gframe.samp_en#
- Gframe.samp_en(per_day: bool = False, delay: int | None = 1, dimension: int | None = 2, tolerance: float | str | None = 'sd', **kwargs)[source]#
Calculates the Sample Entropy using neurokit2.entropy_sample()
For more information on the parameters and details see
neurokit2.complexity.entropy_sample()
.- Parameters:
per_day (bool, default False) – If True, returns a
pandas.Series
with the Sample Entropy for each day. If False, returns the Sample Entropy for the entire dataset.others – For more information on the rest of the parameters see
neurokit2.complexity.entropy_sample()
.
- Returns:
samp_en – Entropy Sample.
- Return type:
float | pandas.Series
Examples
Calculating the Sample Entropy for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.samp_en() Out[3]: 0.6304986341428531
Calculating the Sample Entropy for each day:
In [4]: gf.samp_en(per_day=True) Out[4]: Day 2020-11-27 -inf 2020-11-28 0.709676 2020-11-29 0.628609 2020-11-30 0.508413 2020-12-01 0.599251 ... 2021-03-14 0.545338 2021-03-15 0.405465 2021-03-16 0.578078 2021-03-17 0.536421 2021-03-18 0.344840 Name: Entropy Sample, Length: 112, dtype: float64