glucopy.Gframe.mage#
- Gframe.mage(per_day: bool = False)[source]#
Calculates the Mean Amplitude of Glycaemic Excursions (MAGE).
\[MAGE = \frac{1}{K} \sum \lambda_i * I(\lambda_i > s)\]\(\lambda_i\) is the difference between a pair of consecutive peak and nadir of glycaemia (or nadir-peak).
\(s\) is the standar deviation of the glucose values.
\(I(\lambda_i > s)\) is the indicator function that returns 1 if \(\lambda_i > s\) and 0 otherwise.
\(K\) is the number of events such that \(\lambda_i > s\)
- Parameters:
per_day (bool, default False) – If True, returns a
pandas.Series
with the MAGE for each day. If False, returns the MAGE for the entire dataset.- Returns:
mage – Mean Amplitude of Glycaemic Excursions.
- Return type:
float | pandas.Series
Examples
Calculating the MAGE for the entire dataset:
In [1]: import glucopy as gp In [2]: gf = gp.data('prueba_1') In [3]: gf.mage() Out[3]: 121.6843853820598
Calculating the MAGE for each day:
In [4]: gf.mage(per_day=True) Out[4]: Day 2020-11-27 35.000000 2020-11-28 107.000000 2020-11-29 104.666667 2020-11-30 52.285714 2020-12-01 84.800000 ... 2021-03-14 95.333333 2021-03-15 170.666667 2021-03-16 113.333333 2021-03-17 75.750000 2021-03-18 141.000000 Name: MAGE, Length: 112, dtype: float64